LANCASTER UNIVERSITY

Analysing EOG Signal Features for the Discrimination of Eye Movements with Wearable Devices

Mélodie Vidal, Andreas Bulling, Hans Gellersen September 18, 2011

School of **Computing** and **Communications**

FEIL

School of Computing and Communications | InfoLab21 | Lancaster University | LA1 4WA Tel: 01524 510302 | Email: scc@lancaster.ac.uk | www.scc.lancs.ac.uk

Motivations

- Previous research: Clear link between mental diseases and eye movements
 - Smooth pursuit in particular

• Information can be found in eye movements in detail, not just in the gaze

Motivations

• All experiments: done in the lab

- wearable eye trackers: potential for out-of-thelab studies and monitoring

- context recognition...

• No algorithms detects smooth pursuits!

- same situation for vestibulo-ocular reflex (VOR)

Motivations

• Starting point:

- 1st step towards online algorithm that detect all eye movements

- Approach:
 - Machine learning
 - Features and classification

- Get all types of movements
- Get out-of-the-lab-like movements but ensure ground truth: needed for evaluation
- Test possibilities on both EOG and video trackers
 although in the lab: mobile eye-trackers

- Electro-oculography (EOG)
 - The eye is a dipole
 - Movement: change of potential
 - Electrodes to get horizontal and vertical data

• 19 participants - no glasses, perfect vision

- Mobile devices
 - EOG (128Hz)
 - Dikablis video eyetracker (25Hz)

 All movements: saccades, fixations, nods and shakes, smooth pursuits

- As natural as possible:
 - Very quick
 - Repetitions to suppress surprise effect

School of **Computing** and **Communications**

and the second second

- Ground truth: segmentation of movements
- Extraction of simple, relevant features
 - Mean/max velocity + acceleration
 - Range
 - Slope, 4th order polynome

• From this small set: early results show clusters

Slope and mean velocity particularly interesting

• Test further: try classification.

- K-Nearest Neighbours to categorise movements on our set of features
- 5-fold cross-validation

• kNN classification confirms simple features: promising results for characterisation

Same results for different k's

Conclusion

• Basic set already enough to categorise saccades

Promising results for smooth pursuits too, more features necessary for VORs

 Incentive to extract more features and add complete set of movements

Future Work

- Adding features, more complex set
- Considering 2d and all movements
- Running feature selection algorithm

