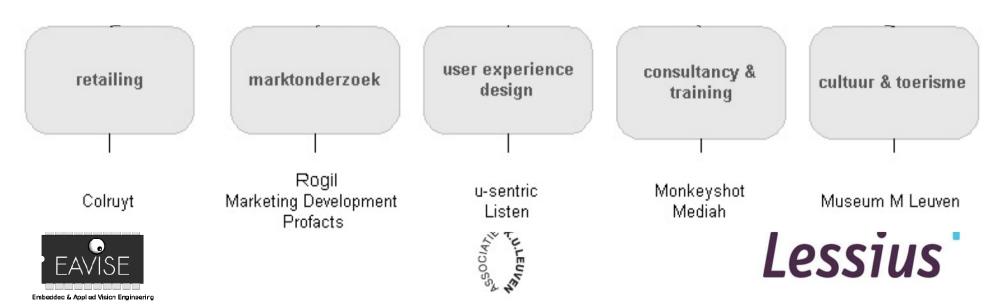
Towards a more effective method for analyzing mobile eye-tracking data:

integrating gaze data with object recognition algorithms

Geert Brône
Bert Oben
Kristof Van Beeck
Toon Goedemé



Project details

New starting project with the following partners:

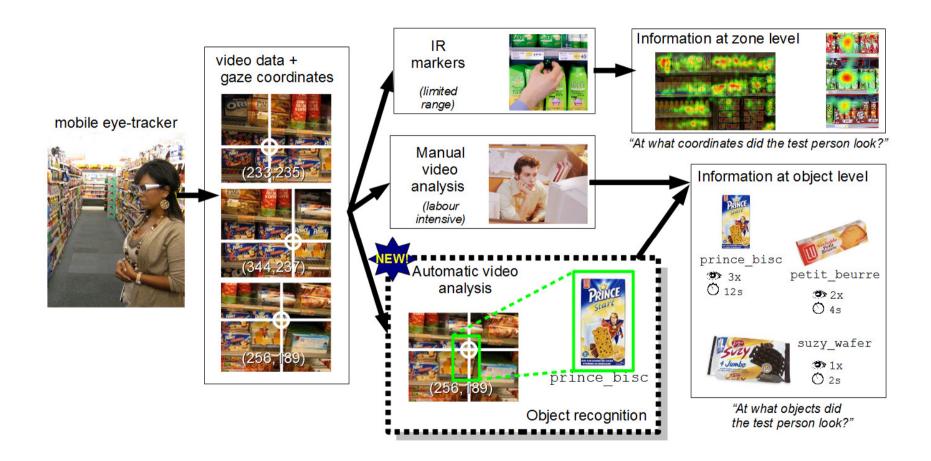
- Dep. Applied Linguistics, Lessius Antwerp, Belgium:
 - Geert Brône and Bert Oben
- Embedded and Applied Vision engineering, Lessius Mechelen,
 Belgium:
 - Toon Goedemé and Kristof Van Beeck
- User commission of company partners:

Introduction

- Mobile eye-tracking hardware boom
 - SMI Iview X
 - Tobii Glasses
 - Mangold Mobile Eye

- Big potential: natural environment, beyond lab conditions
 - Supermarket
 - Sports court
 - . On the road

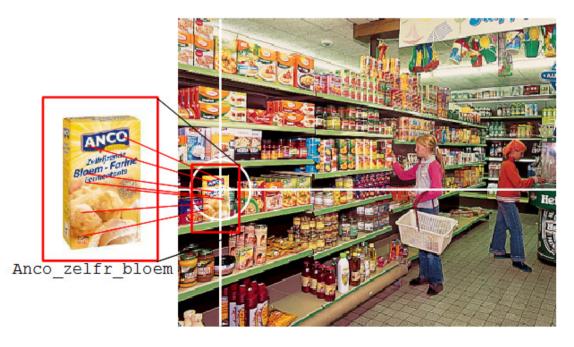
- · Large amounts of data
- Existing methods for automatic processing not applicable



Overview

What's wrong with AOA's?

- Commercially available processing technique:
 - IR markers on objects/shelves
 - Define AOA's and AOI's
- Limitations of this system:
 - AOA defined before test
 - Multiple identical objects need multiple markers
 - AOA is 2D
 - Objects must stay fixed
 - Economically unfeasible for large environments

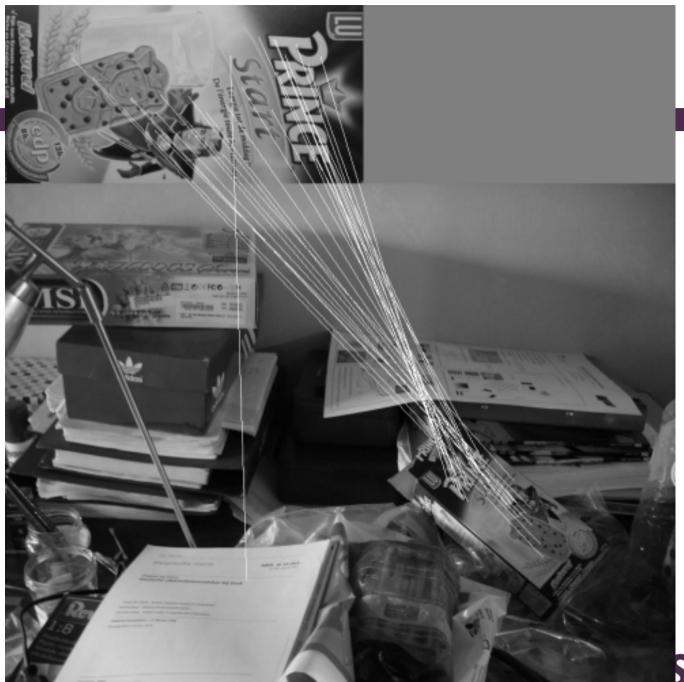


Proposed technique

- Object recognition algorithm automatically analyses video stream (with gaze data)
- Benefits:
 - Target of analysis is not restricted to a region but can be any object (stationary or in motion)
 - Objects do not have to be defined before data capturing
 - Manual labour limited

Implementation of object recognition

- Requirements: robust against viewpoint changes, partial occlusion and illumination changes
- Invariant region matching techniques
 - Algorithm defines interest regions
 - Descriptor vectors invariantly describe visual content of regions
 - Matching of regions across images
 - Objects recognized when enough regions match
 - e.g.: SIFT (D. Lowe), SURF (H. Bay & L. Van Gool)
- Match area around gaze cursor with object database images



ssius

Extra possibilities

Training-by-looking-at

 Database images are captured with eye-tracker by looking at objects to be recognized (before or after test)

Object clouds

- Novel representation method of eye-tracking experiment results
- Analogous to word clouds
- Objects that caught the eye more are shown at a larger scale

Case study 1: complex visual setting

- Eye-tracking products and labels in a supermarket
 - Shopper's choices are influenced by
 - Product positioning
 - Product packaging
 - Price labels

- Cross-validation of proposed technique, compared to classic IRmarker based approach
- Evaluation of the technique:
 - performance, time efficiency
 - user-friendliness, flexibility, quality

Case study 2: changing test conditions

- Challenge in eye-tracking:
 - Changing illumination
 - · (rapid) movement of objects and reference points, ...

- Case: navigation task in a large setting (inside or outside)
 - e.g. Museum or historic city centre
 - Person navigates using sign posts
 - "Does the test person look at the right signs in order to find his/her

way to a target position?"

- Not feasible with classic approaches:
 - Lots of IR markers needed
 - Huge amount of video data for manual analysis

Case study 3: moving objects and background

- IR-marker AOA analysis is limited to static settings
- Case: measurement of visual attention within a moving vehicle
 - Billboards
 - Traffic signs
 - Other road users
 - ...
- Difficulty:
 - Large environment
 - Changing background

Conclusion

- Mobile eye-tracking hardware boom
 - Big potential: natural environment, beyond lab conditions
 - Datasets too large for manual analysis
 - IR-marker-based approaches not applicable in natural environments
- Proposed technique:
 - Object recognition algorithms for data analysis
 - Lots of benefits as compared to IR-markers
- Feasibility study just started
 - 3 case studies chosen
 - Work in progress

Contact

- E-mail:
 - geert.brone@lessius.eu
 - kristof.vanbeeck@lessius.eu
 - toon.goedeme@lessius.eu
- Website:
 - http://www.eavise.be/
- Questions?

