

Eye Tracking Over Small and Large Shopping Displays

C. Tonkin, A. T. Duchowski, J. Kahue, P. Schiffgens, F. Rischner

Clemson University, Fachhochschule Trier

Introduction

 Future pervasive shopping environments may embed eye trackers to track shoppers' gaze

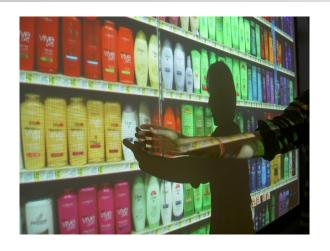
Figure 1. Shopping: (a) Xuuk's eyebox2; (b) CUshop

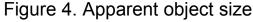
Background

- Current consumer-related eye tracking studies confined to projected screens or images
 - Packaging Media Lab in Bergvik shopping center (Lundberg, 2004)
 - Chandon et al's (2009) examination of shelf facings and position using *planograms*
 - Tonkin et al's (2011) comparison of visual search between physical and virtual display (projected screen)
- This paper compares visual search between projected screen and laptop display

Stimulus

Figure 3. Corresponding search products


Figure 2. Six product shelves: lettuce, lotion, dressing, freezer, organic, shampoo


Six images of a grocery store's product shelves were made

Apparatus

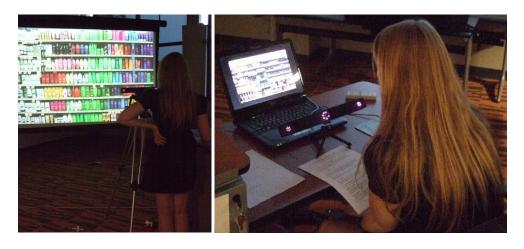


Figure 5. Participant at canvas and laptop

- Apparent size of objects tested "manually"
- Two displays:
 - 15.4 inch laptop display
 - 11.5 foot projection canvas screen
- S1 eye tracker from Mirametrix

Experimental design

- 2 (display) x 6 (product) design
- 20 undergraduate or graduate students recruited
- one group searched for half the items on one display then switched displays (other group did the reverse)

	lettuce	lotion	dressing	freezer	organic	shampoo
canvas	G₁	G₁	G ₁	G_2	$G_{\scriptscriptstyle 2}$	$G_{\!\scriptscriptstyle 2}$
laptop	G_2	G_2	$G_{\scriptscriptstyle 2}$	G_1	G ₁	G_1

Results

- Accuracy (correct identification) varied across the six product shelves
 - from 44% (lotion) to 100% (shampoo)
- Two-way ANOVA of search time showed:
 - significant effect of product (F(5,75)=5.20, p<0.01)
 - (to a lesser extent) effect of display (F(1,79)=3.08,

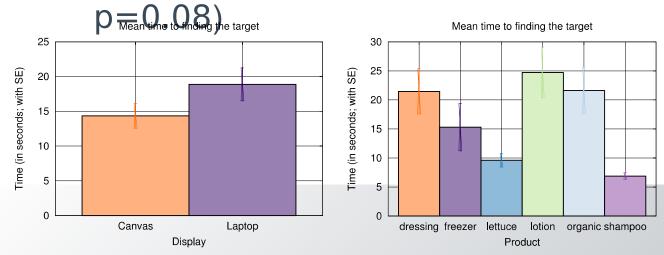


Figure 6. Search time results

Discussion

 Effect of display suggests larger display offers better preview benefit

- Effect of product type appears to be more significant
 - search may be highly dependent on shelf layout
 - context may be more important that display size
- Ultimately, pervasive eye tracking systems embedded in store shelves may be the most suitable for this type of research

Q&A

