Automatic analysis of eyetracking data using object detection algorithms

<u>Stijn De Beugher</u> Younes Ichiche Geert Brône Toon Goedemé

Introduction

- Mobile eye-tracker:
 - Big potential: natural environment, beyond lab conditions
 - Supermarket
 - Sports court
 - On the road
- Problem: manual data analysis
 - Large amounts of data
 - Existing methods for automatic processing not

Lessius

Introduction

Content

- Introduction
- Proposed approach
- Suitable object-detection algorithms
- Experimental results
- Conclusion

Proposed technique

 Object recognition algorithm automatically analyses video stream (with gaze data)

- Benefits:
 - Target of analysis is not restricted to a region
 - Objects can be moving
 - Manual labour limited

- Algorithm defines interest regions
- Descriptor vectors invariantly describe visual content of regions
- Features we use are invariant to translation, rotation and scale

Need for a reliable and distinctive features

- What is a good feature:
 - Satisfies brightness constancy
 - Has sufficient (but not too much) texture variation
 - Does not deform too much over time

Features can be used to match objects between two images

Lessius

Overview suitable techniques

- SIFT (Scale-Invariant Feature Transform) [Lowe99]
 - Finds local maximum of Difference of Gaussian in space and scale
- ASIFT (Affine Scale-Invariant Feature Transform)
 - Affine invariant implementation of SIFT

- SURF (Speeded Up Robust Features) [
 - Find local maximum of Hessian (approximation of Laplacian of Gaussian)
 - Uses integral images for major speed up

Overview suitable techniques

Comparative experiments

Overview approach

Clustering double keypoints

Clustering of both inter- and intra-object double keypoints

Processing keypoint matches

- An object is recognized if:
 - It has the highest number of matches
 - This number exceeds a fixed threshold
- Statistics of each recognized object are stored:
 - How often the viewer fixated to that object
 - For how long it was fixated during the experiment

Graphical output

Frame nr.: 780; time 00:26 Lokaas > viewed

- 1 times; 1.20sec.
- Bio Gazon 1 times; 0.63sec. > viewed

1 Eukanuba Large

Conclusion

- Mobile eye-tracking hardware boom
 - Big potential: natural environment, beyond lab conditions
 - Datasets too large for manual analysis
 - IR-marker-based approaches not applicable in natural environments
- Proposed technique:
 - Object recognition algorithms for data analysis
 - Lots of benefits as compared to IR-markers
- Feasibility experiments
 - First results promising
 - Follow-up project started

Contact

- E-mail:
 - geert.brone@lessius.eu
 - stijn.debeugher@lessius.eu
 - toon.goedeme@lessius.eu
 - younes.ichiche@gmail.com
- Website:
 - http://www.eavise.be/
- Questions?

