Hybrid Eye Detection Algorithm for Outdoor Environments

Jose Javier Bengoechea, Arantxa Villanueva and Rafael Cabeza Public University of Navarra (SPAIN)

Outline

- Introduction
- Objective
- Method
- Experiments
- Results
- Conclusions

Introduction

- Goals for Eye Tracking Technology
 - Low cost eye tracking
 - More versatile and simple systems
 - Video games
 - Automotive industry
- Technical Challenges
 - New image processing techniques
 - New methods for gaze estimation

Introduction

Objective

- To develop an algorithm for eye region detection for a driving scenario using a webcam
 - Fast light variation
 - Fast user movements
 - Occlusions

Method

- Object Detection → Viola Jones Detector
 - Facial features detection algorithm
 - Based on a training stage
 - Face is detected and eye regions are segmented using anthropomorphic measures

P. Viola and M. Jones. Robust real-time face detection. International Journal of Computer Vision, 57:137–154, 2004

Method

- Tracking Algorithm Tracking Learning
 Detection (TLD) Algorithm
 - A tracker and a detector run in parallel
 - An online learning system
- Z. Kalal, J. Matas, and K. Mikolajczyk. Tracking learning detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011.
- Z. Kalal, K. Mikolajczyk, and J. Matas. Face-TLD: Tracking-Learning-Detection Applied to Faces. International Conference on Image Processing, 2010.

Method

- Tracking Learning Detection (TLD) Algorithm
 - A patch is required as input in the first frame
 - The patch is tracked using Lucas-Kanade algorithm and predicts the position of the patch in the next frame
 - The detector is based on 2bitBP features
 - Potential detections are filtered out using information of the tracker
 - The detector is updated online using a random forest procedure

Method

-TLD

Method

- Viola Jones-Pros and Cons
 - It is very robust, i.e. low False Positive rate
 - It fails when head is rotated
 - It fails in presence of strong light

Method

- TLD-Pros and Cons
 - It can learn new instances
 - It fails when fast variations occur, light variations or head movements

- It can get attached to other elements

Method

- New hybrid approach
 - Tries to combine the robustness of the VJ approach with the updating ability of TLD algorithm.
 - TLD intervenes only when VJ fails

Method

- False Positive Filtering
 - The difference between the sizes of the eye region bounding boxes must be less than 60%.
 - The distance between the eye region bounding boxes must be less than twice the bounding box average width horizontally and half of the bounding box average height vertically.
 - The overlap between the bounding boxes must be less than 33%.
 - Both eyes must be detected.

Experiments

- 12 videos of four people in standard driving conditions (2-3 min)
- Videos recorded in different day times
- Logitech c920 HD ProWeb Cam (24 fps 240x320 pixels)

Experiments

- Three methods
 - -VJ
 - TLD
 - Hybrid Approach-Our Method

Results

With FP filtering

Results

	TP Rate	FP Rate before filtering
VJ	64%	2%
TLD	56%	29%
Our Method	84%	10%

	TP Rate	FP Rate after filtering
VJ	64%	2%
TLD	60%	7%
Our Method	82%	5%

Conclusions

- A new method has been presented to track eye regions in outdoor environments
- It combines an online learning tracking method and VJ detector
- The method has an accuracy of 82% while mantaining a low error rate

up<mark>na</mark>

ECEM 2013 (Eve Conference on Eye Movements) Lund (Sweeden) 11/08-16/08 2013 Is hosted by Lund University and co-organized by **COGAIN** Association Courses will be organized the week before!! Call for papers and symposia soon!!