

A New 3D Line of Gaze Estimation Method with Simple Marked Targets and Glasses

Samil Karahan^{1,2}, Yakup Genc², Yusuf Sinan Akgul²

¹TUBITAK BILGEM, Anibal Street, 41470, Gebze, Kocaeli, Turkey ²GIT Vision Lab, http://vision.gyte.edu.tr, Department of Computer Engineering, Gebze Institute of Technology,41400, Kocaeli, Turkey

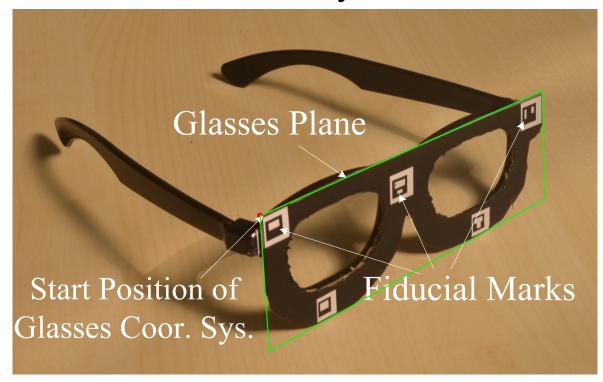
samil.karahan@tubitak.gov.tr {ygenc, akgul}@bilmuh.gyte.edu.tr

PETMEI 2013

Content

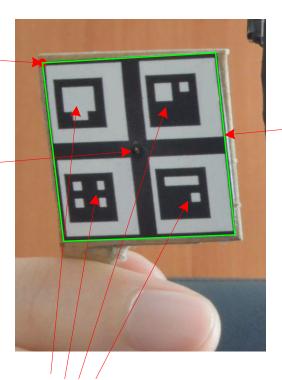
- Introduction
- The Simple Glasses and The Target Paper
- The 3D Geometry of System
- Training Stage
- Estimation of LoG
- LM Optimization
- Results
- Advantages and Drawbacks

Introduction


- We present a new Line of Gaze (LoG) method that uses a paper target with a hole for training and simple glasses for the head tracking.
- The fiducial marks are used for 3D localization via 3D camera geometry.
- The system doesn't need any extra camera or IR light sources.
- The system uses the 3D position of the cornea center and the radii of it to estimate LoG.

Simple Glasses

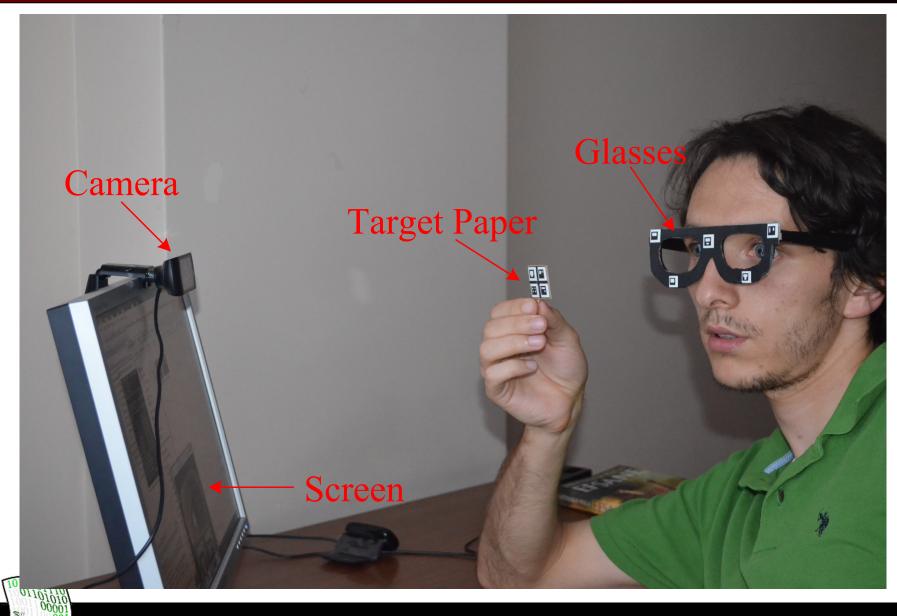
- Removed color filters on basic movie glasses
- The main purposes of glasses:
 - 3D head pose
 - Reference coordinate system on world


Target Paper

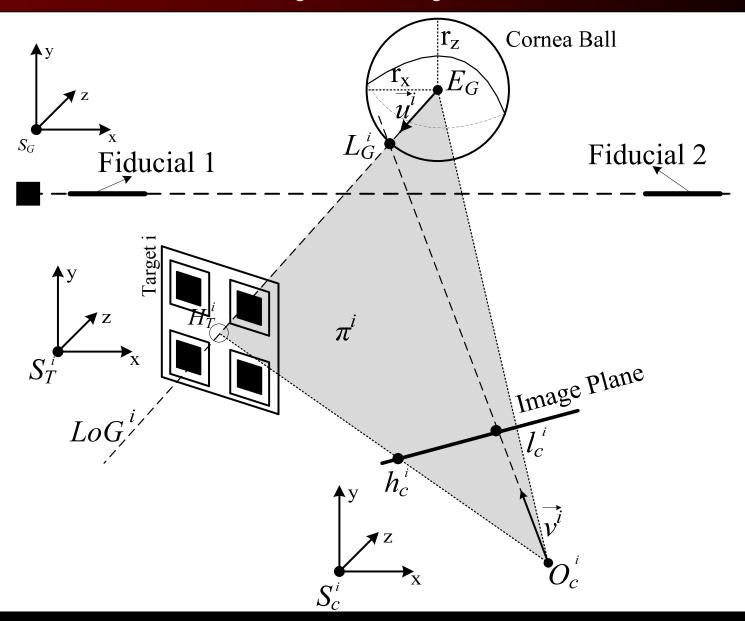
- The target paper makes our calibration more robust.
- It is used during training stage to find localization of cornea center and radii of it.

Paper Coord. System

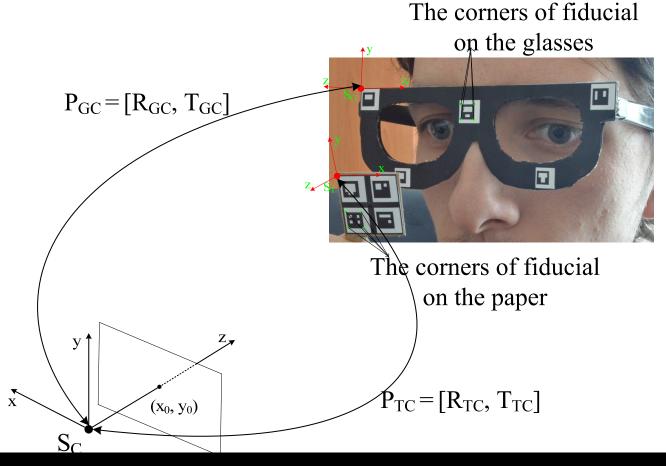
The target hole


Paper Plane

The Fiducial Marks


General Image of System

The 3D Geometry of System



Training Stage

- Detection of Fiducial Marker
- Calculation of Transformation Matrix P_{GC}^{i} and P_{TC}^{i}

Define A Plane Using Three Points

- The system defines a plane on which the 3D position of cornea center is located.
- Three points define a plane in homegenous geometry.

$$\begin{bmatrix} X_1^T \\ X_2^T \\ X_3^T \end{bmatrix} \pi = 0$$

The First Point: The 3D position of the camera center on the glasses coordinate system.

$$M_{GC}^{i}O_{G}^{i} = O_{C}^{i} \longrightarrow O_{C}^{i} = [0 \ 0 \ 0 \ 1]^{T}$$

Define A Plane Using Three Points

- The Second Point: Pupil On Image
 - We detect the center of the pupil on an image by using the gradient field method of (Timm and Bart).

$$l_C^i = [(l_x^i - x_0)/d_{px} \ (l_y^i - y_0)/d_{py} \ f \ 1]$$

The Third Point : The Target Position

$$h_C^i = [(h_x^i - x_0)/d_{px} \ (h_y^i - y_0)/d_{py} \ f \ 1]$$

Estimation of 3D Position of The Cornea

- All planes are used to estimate the 3D position of cornea.
- Common property of all defined planes is that the 3D position of cornea center is located on them.

$$\begin{bmatrix} \pi_1^T \\ \pi_2^T \\ \vdots \\ \vdots \\ \pi_n^T \end{bmatrix} \begin{bmatrix} E_{Gx}/E_{Gt} \\ E_{Gy}/E_{Gt} \\ E_{Gz}/E_{Gt} \\ 1 \end{bmatrix} = 0$$

SVD solution of this lineer system

The Radii of Cornea

 The target 3D position is transformed to glasses coordinate system via transformation matrix.

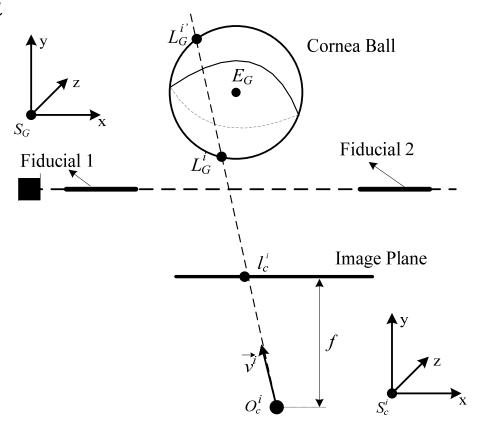
$$E_G + r.\overrightarrow{u_i} = O_G^i + a_i.\overrightarrow{v_i}$$

$$\overrightarrow{u_i}$$
: From E_G towards H_G^i

$$\overrightarrow{v_i}$$
: From O_G^i towards l_G^i

- r and a_i are unknown variables.
- All linear equations, which are derived from all defined planes, are used to estimate the radii.

Test Stage: Estimation of Gaze

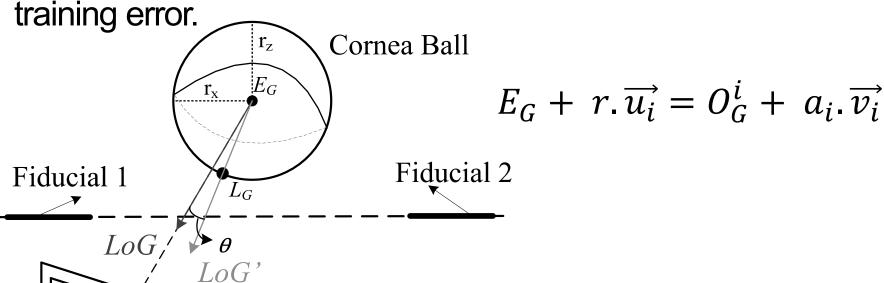


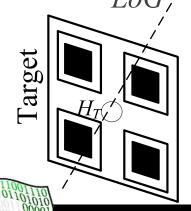
• r is known, but $\overrightarrow{u^i}$ is not because of not using the paper.

$$E_G + r.\overrightarrow{u_i} = O_G^i + a_i.\overrightarrow{v_i}$$

• $\overrightarrow{u^i}$ is unit vector;

$$(O_G^i - E_G + a_i . \overrightarrow{v_i})/r = \overrightarrow{u_i}$$





Levenberg-Marquardt Optimization

- SVD does not give exact solution because of model and calibration errors.
- The main goal of this optimization is minimized the system training error

• The method updates E_G and r vectors to diffirence between estimated LoG and real LoG.

Results

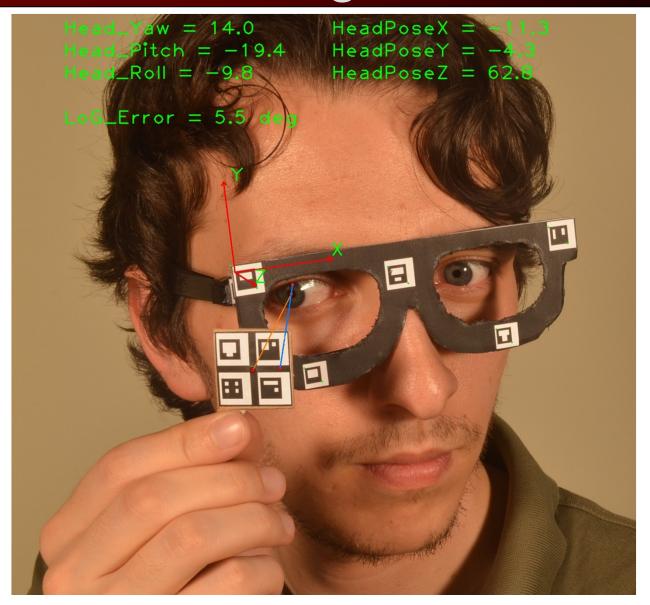
Properties of first user dataset.

Head Pose (Degree)	Cornea Center (x,y,z) cm	Radii Of Cornea (r _x , r _y , r _z) cm	Image Count
-10° < Head Pose <+10°	(3.32, 1.8, 4.22)	(1.38, 1.27, 1.31)	9
-20° < Head Pose <+20°	(3.31, 1.8, 4.25)	(1.40, 1.29, 1.33)	13
$-\infty^{\circ}$ < Head Pose < $+\infty^{\circ}$	(3.32, 1.8, 4.24)	(1.38, 1.28, 1.33)	13

The gaze estimation result of first user not applied LM

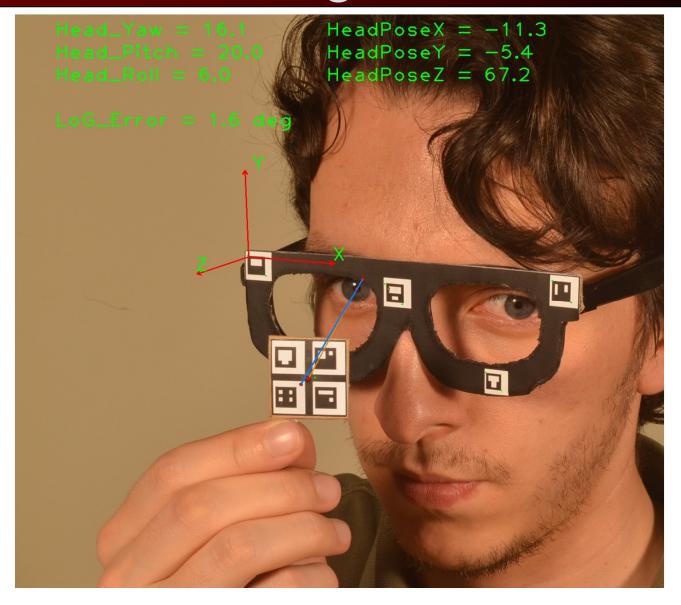
Experiments	Min.	Max.	Mean	Median
Pupil Detection (Timm and Bart)	0.31°	6.88°	3.72°	3.37°
-10° < Head Pose < +10°	2.7°	6.63°	4.88°	4.98°
-20° < Head Pose < +20°	1.05°	6.88°	3.47°	3.03°
$-\infty^{\circ} < \text{Head Pose} < +\infty^{\circ}$	0.31°	5.23°	3.17°	3.37°
Hand Detected Pupil Centers	0.39°	6.83°	3.58°	3.55°

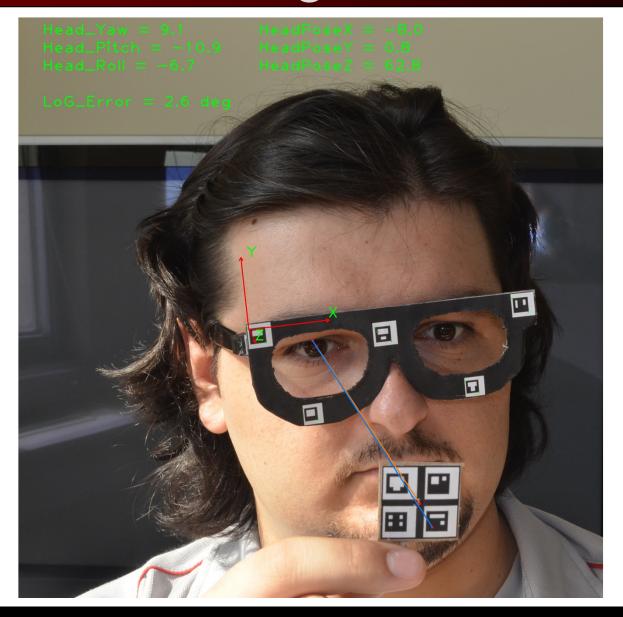
Results


The gaze estimation result of first user applied LM

Experiments	Min.	Max.	Mean	Median
Pupil Detection (Timm and Bart)	0.34°	6.85°	3.52°	3.43°
-10° < Head Pose < +10°	2.0°	6.65°	4.81°	5.07°
-20° < Head Pose < +20°	0.73°	6.85°	3.3°	3.01°
$-\infty^{\circ}$ < Head Pose < $+\infty^{\circ}$	0.34°	4.96°	2.85°	3.32°
Hand Detected Pupil Centers	0.62°	6.41°	3.27°	3.22°

The gaze estimation result of second user applied LM


Experiments	Min.	Max.	Mean	Median
-5° < Head Pose < +5°	2.40°	8.52°	4.81°	3.84°
-10° < Head Pose < $+10^{\circ}$	0.50°	6.81°	3.21°	3.11°
$-\infty^{\circ}$ < Head Pose <+ ∞°	1.31°	8.97°	4.22°	2.99°
Hand Detected Pupil Centers	0.50°	8.97°	4.12°	3.71°



Advantages and Drawbacks

- Some Advantages of System
 - Head movements are not restricted.
 - More robust calibration with the target paper.
 - Calculation of head position and orientation.
 - Calculation of the 3D position and radii of cornea.
- Drawbacks of System
 - The glasses is assumed fixed
 - The glasses occludes the eye when head position is extreme.

Thank You!!

Any Questions??

