Estimating Focused Object using Corneal Surface Image for Eye-based Interaction

Kentaro Takemura† (takemura@tokai.ac.jp),

Tomohisa Yamakawa*, Jun Takamatsu*, Tsukasa Ogasawara*

†Dept. of Applied Computer Engineering, School of Information Science and Technology Tokai Univ. Japan

*Graduate School of Information Science, Nara Institute of Science and Technology, Japan

Motivation

Everyone will wear a information system in the near future

Questions

- How to realize intuitive interfaces ?
- How to control these systems ?
 - There are several hints in human factors
 - Speech
 - Blink
 - Eye movements(Point-of-regard, focused object)
 - Hand and Finger etc.

Eye tracker has to be developed as a daily-use device

Google glass

TOKAI UNIVERSITY

- Requirements as a daily-use device
 - $\blacksquare Heavy \rightarrow Lightweight$
 - **Calibration** \rightarrow Calibration free
 - Estimating PoR → Estimating focused objects

Solve these problems toward daily-use device

TOKAI UNIVERSITY

Approach

- How to solve these problems toward daily-use device
 - Lightweight
 - Calibration free
 - Estimating focused objects

Eye Camera

Retrieve the focused object from corneal surface image

Relative Works

Some research groups are also interested in

using corneal surface image

□ The World in An Eyes(Nishino et al., 2004)

Extracting visual information within a image of an eye

 Super-Resolution from Corneal Reflections (Nitschke et al.,2012)

cting high-resolution image by super-resolution

5

Their works showed the promising results

for employing corneal surface image

- Developing a wearable system toward a daily-use device
- Retrieving the focused objects using corneal surface image

Wearable device

for capturing corneal surface image

- System Configuration
- The device consists of an eye camera and prism, so we achieved lightweight and calibration free.

NCM13-J + NCM-USB-C

1st

3rd[current]

6

2nd

	NUM13-J
pickup device	¼inch, CMOS
resolution	SXGA
frame rate	15[fps]

- Assumption: Corneal surface is a part of sphere
- Detecting iris area with elliptical approximation

Generating unwarped image using inverse ray tracing

- 1. Ray is reflected on corneal surface with the perfect specular reflection model.
- 2. Generating a image of tangent plane as an unwarped image
- 3. The color of each pixel on the plane is computed using inverse ray tracing.
- 4. The intersection between the input image and the ray is calculated.

Constraint $4cdy^{4} - 4dy^{3} + (a+2b+c-4ac)y^{2} + 2(a-b)y + a - 1 = 0$ where $a = \mathbf{S} \cdot \mathbf{S}, b = \mathbf{S} \cdot \mathbf{L}, c = \mathbf{L} \cdot \mathbf{L}, d = |\mathbf{S} \times \mathbf{L}|^{2}$

Normal Vector and reflection point

 $\mathbf{N} = x\mathbf{S} + y\mathbf{L}$ $\mathbf{P} = r_c\mathbf{N} / ||\mathbf{N}||$

TOKAI UNIVERSITY

Result of the generated unwarped image

Corneal surface image

Unwarped image

- Resolution of unwarped image: 640 x 640
- Processing time : About 80 [sec] in MATLAB

We need the improving the processing time using optimization and parallelization

TOKAI UNIVERSITY

Estimating focused object

- It's possible to apply general image processing to the unwarp image
 - □ Feature: Scale-Invariant Feature Transform
 - Outliers are removed using RANSAC

Specific object recognition using unwarped corneal image

Focused object could be recognized

TOKAI UNIVERSITY

Evaluation experiment for object recognition

Eight direction boards located around the university were used

Which objects are you looking at ?

If there are some objects in eye, we cannot detect the focused object.

The image is an unwarped image, when the user looking at book shelf.

It's important to estimate the PoR

🔁 TOKAI UNIVERSITY

Estimating Point-of-Regard

- The gaze vector is known.
- The distance to the PoR is not known.
- Assumption: The distance of PoR is at infinity
 - A vector, which is parallel to the gaze vector, is computed as the reflected ray.
 - The unwarped image is generated around the intersection of the computed parallel vector and corneal sphere.

The results of unwarped images based on Point-of-Regard

The focused object can be extracted based on PoR

Looking at bookshelf

Looking at human

Driving situation

Dependence on illumination condition

The far distance to the focused object \rightarrow Low resolution

Conclusion

- Wearable device as daily-used device is proposed.
- Unwarped image is generated based on PoR using inverse ray tracing.
- Extracting the focused object.

Future works

- Solving problems
 - Dependence on illumination condition
 - The far distance to POR
- Extracting life event as a daily-use device.

🔁 TOKAI UNIVERSITY

THANK YOU FOR YOUR ATTENTION

TOKAI UNIVERSITY