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Understanding how humans subjectively look at and evaluate images is an important
task for various applications in the field of multimedia interaction. While it has been
pointed out over the years that eye movements can be used to infer the internal states
of humans, there have not been many successes concerning image understanding.
In this work, we investigate the possibility of image preference estimation based on
a person’s eye movements in a supervised manner. A data set of eye movements
is collected when the participants are viewing pairs of natural images, and it is
used to train an image preference label classifiers. The input feature is defined as
a combination of various fixation and saccade event statistics, and the use of the
random forest algorithm allows us to quantitatively assess how each of the statistics
contributes to the classification task. The proposed classifier achieved a higher level of
accuracy than the metadata-based baseline methods and a simple rule-based classifier.
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Introduction

Estimating the internal states of humans has been
considered one of the most ultimate tasks for comput-
ers. In the field of image understanding, the subjective
value and meaning of images often receive consider-
able attention from the research community. However,
this is in the eye of the beholder, so to speak, and is
quite difficult to be assessed from images. Recent ad-
vantages in machine learning techniques allow us to
tackle such an ambiguous task in a data-driven man-
ner, and there have been several research attempts to
estimate the values, such as the aesthetic quality (Luo
& Tang, 2008; Nishiyama, Okabe, Sato, & Sato, 2011),
using human-labeled data sets. However, while these
approaches have achieved a certain level of success,
it is not clear whether such an objective ground-truth
measure actually exists for subjective values.

On the other hand, there is a long history of re-
search focusing on eye movements and their relation-
ship to the human mind. Gaze input is achieving more
and more attention recently amid the increasing de-
mand for natural user interfaces, and casual gaze sens-
ing techniques are becoming more increasingly avail-
able. However, in most of the application scenarios, a
gaze is simply considered an alternative pointing input
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modality and the possibility of a gaze used as a cue to
infer the mental states of the users has not been fully ex-
plored. While the view that the eye movement patterns
of humans viewing images can reflect complex men-
tal states has been widely shared among researchers
(Yarbus & Riggs, 1967), very few studies have been con-
ducted on actual classification tasks. It has even been
pointed out that task classification based on eye move-
ments is indeed a very challenging task (Greene, Liu, &
Wolfe, 2012), it is still an open question as to what can
be practically inferred from the eye movements.

We focus on preference estimation in this work for
situations in which a user is comparing a pair of natu-
ral images. Shimojo et al. (Shimojo, Simion, Shimojo,
& Scheier, 2003) reported the cascade effect of gaze.
They showed that people tend to fixate on the pre-
ferred stimulus longer when they are asked to com-
pare two stimuli and make a two-alternative forced
choice. Following this study, several methods have
been proposed to predict preferences from eye move-
ments (Bee, Prendinger, Nakasone, André, & Ishizuka,
2006; Glaholt, Wu, & Reingold, 2009). However, the
main focus of these studies is a comparison between
the same categories of stimuli such as faces and prod-
uct images, and more importantly, the target task is the
early detection of decision making events. The estima-
tion is done while the users are making preference de-
cisions, and therefore, it is unclear whether it is also
possible to estimate the preference between two nat-
ural images during free viewing. Although the eye
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movements during comparative visual searching have
also been widely studied (Pomplun et al., 2001; Atkins,
Moise, & Rohling, 2006), a comparison between two
unrelated images has not been fully investigated.

The goal of this research is to explore the possibil-
ity of gaze-based image preference estimation, and we
mainly make two contributions in this paper. First,
we take a data-driven approach to the preference esti-
mation task. We train a classifier that outputs image
preference labels using a data set of eye movements
recorded while users are comparing image pairs. It
becomes possible to assess the important features for
preference estimation and how they differ among dif-
ferent people by using an algorithm that exploits the
beneficial features for the classification task. Second,
we quantitatively investigate the effectiveness of the
preference estimation in a more realistic scenario in
which the users are freely viewing image pairs without
instruction. Using our method, image preference can
be estimated from the natural eye movements, and this
is expected to enhance the possible applications, such
as for automatic shot selection and photo collection or-
ganization.

Method

We assume a situation in this study where the users
are viewing a pair of natural images displayed side
by side. Our goal is to classify which image the user
prefers from the patterns of the eye movements dur-
ing the comparative viewing. We address this task in
the supervised manner that we mentioned above. A
binary classifier is trained to output unknown pref-
erence labels from the eye movement patterns based
on the ground-truth labels for the image preferences.
Since it is not clear what kind of measures could con-
tribute to the classification task, various fixations and
saccades statistics are considered as the input features
in a similar way as in (Castelhano, Mack, & Henderson,
2009; Mills, Hollingworth, Van der Stigchel, Hoffman,
& Dodd, 2011; Greene et al., 2012). The use of a random
forest algorithm (Breiman, 2001) allows us to automati-
cally select the more efficient features for the classifica-
tion task, and their contribution can be quantitatively
evaluated as feature weights. We describe the details
for the experimental setting, the input feature vector
used in our method, and the learning procedure of the
classifier in the following sections.

Experimental Settings

We used a Tobii TX300 eye tracker, which is shown
in Figure 1, for our data collection. The image pairs
were displayed on the 23” full HD TFT monitor of the
tracker, and the eye movements were recorded at 60
Hz. The display areas were separated in the middle
of the monitor, and each image was displayed in a
960× 1080 pixel region. A chin rest was used to sta-

Figure 1. Experimental setup

bilize the viewing position at about 60 cm from the
tracker.

The experiment had two phases: free viewing and
preference labeling tasks. After calibration, 11 novice
participants were first asked to freely view 80 pairs of
images without any specific instruction. Each pair was
displayed for 10 seconds, and a white cross was dis-
played at the center of the monitor to control the fix-
ation location for 3 seconds of intermission between
the image pairs. Next, we showed 400 pairs of im-
ages in the same way, and instructed the participants
to answer which image was preferred. After each pair
was displayed, the participants were asked to press a
number key corresponding to the side that he/she pre-
ferred. After a key was pressed, the next pair was
displayed following the white cross targets. At the
end, the first 80 pairs were displayed on the monitor
again and the participants were instructed to answer
with their preferences in the same way as in the la-
beling phase. Throughout the experiments, data was
discarded if the participant pressed the wrong key by
mistake or a saccade event happened on only one side.

We collected stimulus images from the Internet be-
cause our primary interest was whether objective mea-
sures such as user-provided metadata can be used to
infer subjective image preference. More specifically,
we collected images given high interestingness from the
Flickr1 website. This implies all of the stimulus images
had a certain level of quality, and there was no obvi-
ous quality difference between the paired images. At
the same time, two kinds of metadata, the number of
comments and user favorites, were downloaded from
the website to infer the popularity of the images. The
downloaded images were restricted to have almost the
same aspect ratio (from 1 : 1 to 8 : 9) for the display area
and letterboxed to fit 8 : 9 to avoid cropping and any
concomitant change in image composition. They were
randomly combined to make the 480 image pairs de-
scribed above.

Eye Movement Feature

The input to our method is a gaze data sequence
{(gggn, tn)}, i.e., N gaze positions gggn associated with their

1 http://www.flickr.com
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time stamp values tn. t0 = 0.0 indicates the time when
the image pair appeared on the display, and tN−1 = 1.0
is the time when the pair disappeared.

We first follow a standard procedure that is based
on the velocity threshold to extract the fixation
and saccade events from these data. We regard
{(gggn, tn), . . . ,(gggm, tm)} as data during a fixation if their
angular velocities are below a predefined threshold.
The first fixation is discarded because its position is
highly affected from the previous stimulus. We define
three attributes for each fixation event F , the position
ppp, duration T , and time t. If the i-th fixation Fi hap-
pens from tn to tm, pppi is defined as a median of the gaze
positions, Ti = tm− tn and ti = tn. Assuming that the ar-
eas in which each of the paired images is displayed are
known, fixations {(pppi,Ti, ti)} can be divided into two
subsets, i.e., fixations on the image on the left FL and
that on the right FR. At the same time, the fixation po-
sitions are normalized according to the display area of
each image so that the x and y coordinates are at [0,1].

Saccade events are defined only when two succes-
sive fixations Fi and Fi+1 happen on one side of the im-
age pair. Four attributes are defined for each saccade
event: direction ddd, length l, duration T , and time t.
Given a saccade vector sss = pppi+1− pppi, length l is defined
as its norm |sss| and the direction ddd is defined as a nor-
malized vector sss/l. The duration and time are defined
in the same way as the fixation events. As a result, two
sets of saccade events SL and SR are defined for each
side of the image pair.

We compute various statistics for each attribute from
these sets of fixations and saccades. Table 1 summa-
rizes the attribute and statistical operation combina-
tions. The means and variances are computed for all
the attributes, and the covariances between x and y are
additionally computed for the vector attributes (fixa-
tion position and saccade direction). The sums are com-
puted for the scalar quantities other than time t, and the
total counts of the fixation and saccade events are also
computed and normalized so that the sum between the
left and right images becomes 1.0. There are a total of
25 computed values for each side (11 from the fixations
and 14 from the saccades), and they are concatenated to
form a 50-dimensional feature vector xxx = ( fff T

L , fff T
R)

T of a
paired image.

Preference Classification

The task is to output preference label y ∈ {1,−1},
which indicates whether the preferred image is the left
(1) or right (−1) one from the input feature vector xxx. As
discussed above, we assume that the ground-truth la-
bels of the image preference are given, and train a clas-
sifier that maps xxx into y using the labeled data.

Because of the symmetric nature of the problem def-
inition, a labeled pair of images and its corresponding
eye movement data can provide two training data. If
the user prefers the image on the left, for example, fea-

Table 1
Combinations of event attributes and statistical operations
used to compute features for our classifier.

Fixation

Position ppp
Mean (×2)

Variance (×2)
Covariance

Duration T
Mean

Variance
Sum

Time t Mean
Variance

Count

Saccade

Direction ddd
Mean (×2)

Variance (×2)
Covariance

Length l
Mean

Variance
Sum

Duration T
Mean

Variance
Sum

Time t Mean
Variance

Count

ture vector xxx = ( fff T
L , fff T

R)
T is associated with label y = 1,

while the left-right flipped feature vector xxx = ( fff T
R, fff T

L)
T

can also be used with label y =−1 for training.
Random forest (Breiman, 2001) is a method of super-

vised classification using a set of decision trees. Given
a set of training samples, the random forest algorithm
trains the decision trees using random subsets of the
samples. Each tree is grown in a way to determine the
threshold value for an element in the feature vector that
most accurately splits the samples into correct classes.
After the training, the classification of an unknown in-
put feature is done based on a majority vote from these
trees. In addition to its accuracy and computational ef-
ficiency, the random forest algorithm has an advantage
in that it can provide feature importance by evaluating
the fraction of the training samples that are classified
into the correct class using each element. In the experi-
ments, the classifiers are implemented using the scikit-
learn library (Pedregosa et al., 2011)2. The number of
trees was set to 1000, and the depth of each tree was
restricted to 3.

Results

Classifier Performance

Figure 2 shows a comparison of the preference clas-
sifier with the baseline methods. Accuracy scores

2 http://scikit-learn.org/
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Figure 2. Comparison with baseline methods. The graphs
show the mean accuracies from the 11 participants and the
error bars indicate the standard errors. The first three graphs
show the classification results using the objective metadata,
which was the number of comments and favorites on the
Flickr website, and the local votes from the other participants.
The fourth graph shows the accuracy of the simple classifica-
tion using only the sum of the fixation duration, and the last
graph corresponds to the proposed method.

were used for evaluation because positive and nega-
tive classes are symmetric in our problem setting. We
compared the proposed classifier with three baseline
methods. The first and second graphs show the clas-
sification results using the metadata obtained from the
Flickr website. In these classifiers, the output label is
the image with the higher metadata score (the greater
number of comments or favorites). The third graph
shows the results when using more local metadata,
which were the preferences of the other participants.
Since the same image combinations were given to all
the participants, the side that received more votes from
the other participants was treated as the classification
result. If the numbers of votes were the same, the pair
was regarded as a misclassification.

We additionally show a simple classification result
using only the sum of the fixation duration to assess the
meaning of the data-driven training. The fourth graph
shows the accuracy of the classification strategy where
the sides with the longer fixation duration were treated
as the output labels.

The proposed classifier was trained and tested in a
leave-one-out manner using the personal training data
sets obtained during the labeling phase. For each im-
age pair, a classifier was trained using the rest of the
training data and the output label was compared with
the ground-truth label to compute the classifier accu-
racy. The rightmost graph corresponds to the proposed
classifier.

In all cases, the graphs show the mean accuracies of
the 11 participants and the error bars indicate the stan-
dard errors. Not surprisingly, the accuracies of the first
three classifiers based on the objective metadata were
quite low and barely above the chance level. Although
the third method using the local votes achieved the
best accuracy, even the local choices can diverge and

it is not easy to estimate the image preferences with-
out observing the target person. The mean accuracy
of the proposed method was 73%, and higher than all
of the metadata-based methods (Wilcoxon signed-rank
test: p < 0.01). While the simple classification based on
the fixation duration also achieved a comparative accu-
racy, the performance was improved by using the pro-
posed training approach (Wilcoxon signed-rank test:
p = 0.02).

Cross-subject Training
In the previous section, the trainings were done us-

ing the personal data sets. While this follows the stan-
dard procedure for supervised classifications, it is not
always possible to collect the appropriate training data
from the target user. The objective in this section is to
confirm whether or not it is possible to use the training
data obtained from different people for the classifica-
tion task.

Figure 3 shows an accuracy comparison between the
within-subject and cross-subject training conditions.
The within-subject condition corresponds to the leave-
one-out setting discussed in the previous section. In
the cross-subject condition, the training and testing are
done in a leave-one-subject-out manner; the classifier
is trained for each person using the data from the other
10 participants. Each graph in Figure 3 corresponds to
a participant (s1 to s11), and the rightmost graphs show
the mean accuracy from among all the participants.

While the within-subject training improves the ac-
curacies of some participants such as s4, the cross-
subject training generally achieved a comparative ac-
curacy and there was no statistically significant differ-
ence in the mean scores (Wilcoxon signed-rank test:
p = 0.91). This indicates that the proposed framework
could successfully capture discriminative eye move-
ments that can be commonly observed among different
people.

Feature Importances
The feature importances obtained through the ran-

dom forest classifier training process are shown in Fig-
ure 4 to visualize the differences between the within-
subject and cross-subject conditions and to quantita-
tively assess how each element of the feature vector
contributed to the classification task. In our case, the
feature importances are computed as a fraction of the
samples each of the elements contributed to the final
prediction. The higher value thus means there was
more contribution to the classification.

Our 50-dimensional feature vector consists of 25
statistical measures computed from both sides of the
paired image regions. However, as discussed earlier,
the definition of the classification task is symmetric and
the labeled training data was duplicated to create left-
right flipped training samples. Therefore, two corre-
sponding elements (e.g., fixation counts on the left side
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Figure 3. Cross-subject training. The within-subject condition corresponds to the leave-one-out training and testing for each
participant. In the cross-subject condition, the classifier is trained for each person using the data from the other participants.
Each graph corresponds to a participant (s1 to s11), and the rightmost graphs show the mean accuracy from among all the
participants.
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Figure 4. Feature Importances obtained through training process of random forest classifier. The graphs correspond to the
importances of 25 features listed in Table 1 and are color-coded according to the training data used.

and the right side) theoretically have the same impor-
tance through the training process, and the sums of the
two values are shown in Figure 4. The graphs corre-
spond to the importances of the 25 features listed in
Table 1 and are color-coded according to the training
data used. s1 to s11 indicate the within-subject training
condition, i.e., the feature importances obtained when
personal training data sets were used. All indicates the
case when all of the data from the 11 participants were
used for training.

The three most contributing features are fixation-
count, fixation-duration-sum, and saccade-count in most of
the cases, and this agrees with the gaze cascade effect.
Compared to these three elements, the contribution of
saccade-duration–sum is not very high. The time stamp
statistics (time-mean and time-variance of both the fixa-
tion and saccade) showed a certain amount of contribu-
tion, and saccade-length-sum also contributed for some
participants.

It can be seen that person s4, who showed the
largest performance improvement from the within-
subject training in Figure 3, has a unique distribution
compared to the other participants, and the fixation po-
sition was the key to the improvement.

Free Viewing

The results discussed in the previous sections were
based on the data set obtained during the labeling
phase, where the participants were instructed to as-
sign preference labels. While this setting is the same
as in the prior works (Bee et al., 2006; Glaholt et al.,
2009), as discussed in (Shimojo et al., 2003), the label-
ing task itself can affect the eye movements and the
gaze cascade effect is not strongly observed during free
viewing. From a practical point of view, its applica-
tion is severely limited if the preference estimation can
be done only when users are instructed to judge their
preferences.

Figure 5 shows the performance of the proposed
classifier for the eye movements recorded during the
free viewing phase of the experiments. The right-
most graph shows the mean accuracy when using the
within-subject training data of the labeling phase. We
used 400 pairs from the labeling phase as the training
data for the target person, and the classifier was tested
against 80 pairs from the free viewing phase. While
it was less accurate than when using the test data from
the labeling phase, the mean accuracy was 61% and still
significantly higher than the results based on the local
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Figure 5. Performance comparison based on free viewing.
The rightmost graph shows the mean accuracy, where the
data from the labeling phase were used as the training data
and the classifier was tested against the data from the free
viewing phase. The other two graphs show the results when
using the data from the free viewing phase for both the train-
ing and testing under within-subject and cross-subject train-
ing conditions.

votes (the leftmost graph, Wilcoxon signed-rank test:
p < 0.01).

For comparison, the other two graphs show the re-
sults when using the data from the free viewing phase
for both the training and testing. The mean accura-
cies of the within-subject leave-one-out test and cross-
subject leave-one-subject-out test are both shown, and
they are less accurate than the previous case using
the training data from the labeling phase. However,
since the amount of training data from the free view-
ing phase was much lower than that from the labeling
phase, a direct comparison was impossible. A detailed
investigation using more training data will be an im-
portant future work.

Conclusion

We presented a data-driven approach for image pref-
erence estimation from eye movements. A labeled data
set of eye movements was collected from 11 partici-
pants that were comparing two images side by side un-
der two conditions, free viewing and preference label-
ing. The feature vectors were composed of a set of fixa-
tion and saccade event statistics, and the random forest
algorithm was used to build a set of decision trees. This
allowed us to not only build image preference classi-
fiers but also assess the contributions of each statistic
element to the classification task.

The proposed classifier was more accurate than the
metadata-based baseline methods, and the training
process was shown to improve the accuracy than a
simple classification strategy using the fixation dura-
tion. While the training was shown to be effective even
when using training data from different people, varia-
tions could be observed in the feature importances ob-
tained during the training process. This indicates the
effectiveness of the data-driven approach for classifica-

tion tasks that uses eye movements.
The classification could be done under the free view-

ing condition. However, we observed lower accu-
racy than the test under the labeling condition. While
it strongly suggests that the characteristic eye move-
ments are caused by the preference decision activ-
ity, the performance gain obtained via the data-driven
training is promising enough for further improvement.

The image preferences when using our approach
can be inferred from the eye movements during im-
age browsing. This allows us to explore using the eye
movements in new applications, e.g., automatic image
organization and summarization. Our future work will
include extension of the proposed approach to single
images and other tasks for estimating subjective values.
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