Eye Gaze Tracking Using an RGBD Camera: A Comparison with an RGB Solution

Xuehan Xiong (сми), Qin Cai, Zicheng Liu, Zhengyou Zhang

Microsoft Research, Redmond, WA, USA

zhang@microsoft.com http://research.microsoft.com/~zhang/

The 4th International Workshop on Pervasive Eye Tracking and Mobile Eye-Based Interaction (PETMEI 2014)

Outline

- Goal and motivation
- Challenges
- Approach
- Results

Goals and motivations

1. Kinect-based eye tracking

2. Comparison between RGBD and RGB alone

Goals and motivations

- Most commercial eye trackers are IR-based
 - Short range
 - Does not work outdoor
- Non-IR based system
 - Outdoor
 - Cheaper
 - Better capability of being integrated
 - Less accurate

Outline

- Motivation
- Challenges
- Approach
- Results

Challenges

• Eye images from IR-based approaches

• Eye images from Kinect

Outline

- Motivation
- Challenges
- Approach
- Results

• What is gaze (in our model)?

Notation: \mathbf{p} -- pupil \mathbf{v} -- visual axis \mathbf{t} -- optical axis \mathbf{R}_{vo} -- rotation compensation \mathbf{b}/\mathbf{w} \mathbf{v} and \mathbf{t} $\mathbf{v} = \mathbf{R}_{vo}\mathbf{t}$

 $\begin{array}{l} \textbf{a} \mbox{ -- head center} \\ \overline{\textbf{ae}} \mbox{ -- offset} \\ \textbf{R}_{hp} \mbox{ -- head rotation} \\ r \mbox{ - eyeball radius} \end{array}$

Eyeball center: $\mathbf{e} = \mathbf{a} + \mathbf{R}_{hp} \overrightarrow{\mathbf{ae}}$

• What are fixed (in our model)?

Notation: \mathbf{p} -- pupil \mathbf{v} -- visual axis \mathbf{t} -- optical axis \mathbf{R}_{vo} -- rotation compensation b/w \mathbf{v} and \mathbf{t} $\mathbf{v} = \mathbf{R}_{vo} \mathbf{t}$

 $\begin{array}{l} \textbf{a} \mbox{ -- head center} \\ \overrightarrow{\textbf{ae}} \mbox{ -- offset} \\ \textbf{R}_{hp} \mbox{ -- head rotation} \\ r \mbox{ - eyeball radius} \end{array}$

Eyeball center: $\mathbf{e} = \mathbf{a} + \mathbf{R}_{hp} \overrightarrow{\mathbf{ae}}$

• What to be measured (in our model)?

a -- head center $\overrightarrow{ae} -- offset$ R_{hp} -- head rotation r - eyeball radius

Eyeball center: $\mathbf{e} = \mathbf{a} + \mathbf{R}_{hp} \overrightarrow{\mathbf{ae}}$

- System calibration
- Head pose
- Head center
- Pupil
- User calibration

System calibration

- World = color camera
 - Intrinsic parameters, centered at [0,0,0]
- Depth camera
 - Intrinsic and extrinsic parameters
- Monitor screen
 - Screen-camera calibration

Screen-camera calibration

- 4 images capturing screen + pattern
- 1 image from Kinect camera capturing the pattern

Calibration results

Head pose estimation

• Build a person-specific 3D face model

Rigid points

Average over 10 frames

Head pose estimation

• For each frame t

Head center

• The average of 13 landmarks

2D Iris detection

$$\mathbf{u} = [u, v, f]^{\mathrm{T}}$$
 from camera intrinsic parameters
 $\mathbf{l} = \frac{\mathbf{u}}{\|\mathbf{u}\|}$

User calibration

• What are fixed (in our model)?

Eyeball center: $\mathbf{e} = \mathbf{a} + \mathbf{R}_{\rm hp} \overrightarrow{\mathbf{ae}}$

Outline

- Motivation
- Challenges
- Approach
- Results

Results

• Simulation

Error modeling

- Assuming perfect calibration (system and user)
- 3 sources of errors (assuming normal distribution with zero mean)
 - Head pose
 - Head center
 - Pupil
- Units
 - Head pose: degree
 - Head center: mm
 - Pupil: pixel

Simulation Result with low variances

• Variances – 0.1

Back to reality

Variance – 0.25

Variance – 0.5

Real Data: Free head movement

Experimental setup

- The monitor has a dimension of 520mm by 320mm.
- The distance between a test subject and the Kinect is between 600mm and 800mm.
- There are 9 subjects participated in the data collection.
- We collect three training sessions and two test sessions for each subject.

Best case scenario

Training error

Left eye

Right eye

Testing error

Right eye

Testing error 2

Right eye

Sample Results Without Stickers

Qin

Qin – training error

Right eye

Qin – testing error

Right eye

Qin – testing error 2

Right eye

No (little) head movement

Best case scenario

Training error

Left eye

Right eye

Sample Results Without Stickers

Qin

Qin – training error

Right eye

Qin – testing error

Right eye

Gaze errors on real-world data

Average errors: 4.6 degrees with RGBD, and 5.6 degrees with RGB

Low-bound of gaze errors

With colored stickers

Average errors: 2.1 degrees with RGBD, and 3.2 degrees with RGB

Conclusions

- Using depth information directly from Kinect provides more accurate gaze estimation compared with the one from only RGB images.
- The lower bound for gaze error is around 2 degrees with RGBD and 4 degrees with RGB
- Future work
 - Better RGBD sensor -> lower gaze error
 - Leverage two eyes

Zhengyou Zhang, Qin Cai, Improving Cross-Ratio-Based Eye Tracking Techniques by Leveraging the Binocular Fixation Constraint, in ETRA 2014.

Thank You