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Overview

Why do we move our eyes?

Why do we tend to study fixations?

 Why should we look at eye-movements? [15]
 Scene and task: saccade amplitude dynamics
« decision-making:saccade and smooth pursuit

* user state: eye-movement planning

« Should we and how do we start studying eye-
movements?



Why do | study eye-movements?
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Introduction
Non-interruptive evaluation of human-in-the-loop

with Prof. Harald Reiterer
BW-FIT




Introduction A‘%

Research Framework: Human-in-the-Loop

External Disturbances
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Research Framework: Human-in-the-Loop
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Visual information is physiological limited

Rosenholtz, R. (2011). What your visual system sees where you are not looking. Proc SPIE Human Vision and Electronic Imaging, 7(1),
786510-786510-14. http://doi.org/10.1117/12.876659



Eye-movements

control the rate of information sampling
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Eye-tracking

reveals(?) information sampling

Subtasks:

* Observe oncoming
traffic

* Drive curve

* Read traffic signs

e Search pedestrian

* Mirror check

 Check speed

* Regulate distance

Credit: SMI



Why do we study fixations?




Fixations indicate Cognition
Yarbus, 1967

"Itis easy to determine fromthese records which elements
attract the observer's eye (and, consequently, his thought), in
what order, and how often.”

Yarbus, A. L. (1967) Eye movements and vision
(B. Haigh, Trans.), New York: Plenum Press.




Do Fixations indicate Cognition!?

2012-present

1. Determine the decade in which the picture was taken (decade).
2. Determine the wealth of the people in the picture (wealth).

3. Memorize the picture (memory).
4. Determine how well the people in the picture know each other (people).

Greene,M.R., Liu, T., & Wolfe, J. M. (2012). Reconsidering Yarbus: A failure to predictobservers’task from eye movement patterns.
Vision research, 62,1-8.
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Do Fixations indicate Cognition!?

2012-present

1. Determine the decade in which the picture was taken (decade).

2. Determine the wealth of the people in the picture (wealth).

3. Memorize the picture (memory).

4. Determine how well the people in the picture know each other (people).
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[1] Greene, M. R., Liu, T., & Wolfe, J. M. (2012). Reconsidering Yarbus: Afailure to predict observers’task from eye movement patterns.
Vision research, 62,1-8.
[2] Boriji, A., & Itti, L. (2014). Defending Yarbus: Eye movements reveal observers’ task. Journal of Vision, 14(3), 29-29. http://doi.org/10.1167/14.3.29



Do Fixations indicate Cognition!? %

2012-present

1. Determine the decade in which the picture was taken (decade).

2. Determine the wealth of the people in the picture (wealth).

3. Memorize the picture (memory).

4. Determine how well the people in the picture know each other (people).
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Do Fixations indicate Cognition?

2012-present
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[1] Kardan, O., Berman, M. G., Yourganov, G., Schmidt, J., & Henderson, J. M. (2015). Classifying mental states from eye movements during scene
viewing. Journal of Experimental Psychology: Human Perception and Performance, 41(6), 1502-1514. http://doi.org/10.1037/a0039673



I’'m sorry, but...

fixations are not eye-movements

* Fixations/Dwells

«  measurable by 30Hz cameras
« algorithms discard all movement (blinks, saccades...)




Task and Scene properties

influence saccade amplitude dynamics




Bottom-up visual saliency

Semantic feature channel
Faces/Text/Object detector

Color Intensny Onentatnon

Saliency map with semantic channel

Saliency map

N\ /7

Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual
attention. Vision Research, 40(10-12), 1489-1506. http://doi.org/10.1016/S0042-6989(99)00163-7

Borji, A., & Itti, L. (2013). State-of-the-art in visual attention modeling. IEEE transactions on pattern analysis and
machine intelligence, 35(1), 185-207.



Quick word about saliency models

Do we look at lights?

| ———— S

b) central bias

) foreground (ie., objects)
lights

e) around lights

f) sky

g) contrast (high spat. freq.)
h) contrast (low spat. freq.)
i) edges (high spat. freq.)

j) edges (low spat. freq.)

k) contrast (high spat. freq.)
) contrast (low spat. freq.)

Vincent, Baddeley,Correani, Troscianko & Leonards, 2009.
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Central Bias

Most naturally occurring human saccades
have magnitudes of 15 degrees or less.
A. Terry BAHILL, DEBORAH ADLER, AND
LAWRENCE STARK.

Normal human saccadic eye movements are
seldom larger than 15 degrees. In an outdoor
environment, 86 per cent of the saccades of three
subjects were 15 degrees or less in magnitude.
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Fig. 1. Frequency of occurrence of various sized
saccades for three normal subjects. The solid line
representing the equation Y = 15 exp(-X/7.6),
where Y is the per cent occurrence, and X is size
of the saccade in degrees, was derived by the
method of least squares from all of the data.
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[1] Bahill, A. T., Adler, D., & Stark, L. (1975). Most naturally occurring human saccades have magnitudes of 15
degreesor less. Investigative Ophthalmology, 14, 468-469.

[2] Boney, B., Chuang, L. L., & Escolano, F. (2013). How do image complexity, task demands and looking biases influence human gaze
behavior? Pattern Recognition Letters, 34(7), 723-730. http://doi.org/10.1016/.patrec.2012.05.007



Model for two modes of Looking “%

Ambient mode (l00k): short fixations and long saccades
processes scene gist and spatial orientation

Focal mode (see): long fixations and short saccades
processes object identities and memory encoding

Buswell, G. T. G. T. (1935). How people look at pictures. Social Science Research (1sted.). Chicago, llinois: The University of Chicago Press.
Unema, P.J. A., Pannasch, S., Joos, M., & Velichkovsky, B. M. (2005). Time course of information processing during scene perception: The
relationship between saccade amplitude and fixation duration. Visual Cognition, 12, 473-494, doi:10. 1080/13506280444000409.

Pannasch, S., & Velichkovsky, B. M. (2009). Distractor effect and saccade amplitudes: Further evidence on different modes of processing in free
exploration of visual images. Visual Cognition, 17(6-7), 1109-1131.

Eisenberg, M. L., & Zacks, J. M. (2016). Ambient and focal visual processing of naturalistic activity. Journal of Vision, 16(2), 5.



Looking modes and Scene complexity

Modes of looking (ambient & focal; Pannasch & Velichovsky, 2009):
* In general:patterns of a long saccade after several short saccades.

Model the short (S) and long (L) saccades (xi ) as a Markov process of
* P(LIS,S....,S)
* Estimate the likelihood of a long saccade after n short saccades

Probability of a long saccade Probability of a long saccade Probability of a long saccade
in Low—complexity images in Medium-complexity images in High—complexity images
1 : 1 . 1 :
ogl| =—Free view ’ :
o | Visual Search
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"g 03
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2 4 6 a 10 1 1 16 22 2 4 6 a8 10 1 1 16 22 2 4 6 8 10 1 1 16 22
after Ns short saccaées (1|s|| <= g’ dea after Ns short saccaées (]lsll <= 53 deao) after Ns short saccaées (Tlsll <= 53 deéo)

Boney, B., Chuang, L. L., & Escolano, F. (2013). How do image complexity, task demands and looking biases influence human gaze behavior?
Pattern Recognition Letters, 34(7), 723-730. http://doi.org/10.1016/j.patrec.2012.05.007
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Describing a scene in terms of gaze behavior

Describing a scene in terms of looking modes

Boney, B., Chuang, L. L., & Escolano, F. (2013). How do image complexity, task demands and looking biases influence human gaze behavior?
Pattern Recognition Letters, 34(7), 723-730. http://doi.org/10.1016/j.patrec.2012.05.007



Describing a scene in terms of gaze behavior %%
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Four-connected grid graph

* Fixed node positions (1650 nodes per image)

* Characterize node regions R of diameter 2 deg

* Edges weighted by I(R(vi),R(vj))
”Information” within region

* Feature vector for each pixel p O IR ﬁ

* fn(p):R,G,B, Vx,Vy, V2xx, V2yy

* Assuming d-dimensional Gaussianity with mean @i and covariance Qi
Edge-weights

* [(R(vi)),R(v))) = 0.5*log:(|ZDi|| ZDj|)/|2D])



Describing a scene in terms of gaze behavior %%
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Random Walk
* P; : probability to go from vi to an adjacent node v; ,
proportional to the edge weight

W13§11:2)
* Weights for n nodes,W; = |(R(vi),R(vj)) with Wi =W; (undirected graph)

* Convergenceto a Markov chain’s stationary distribution p which has to satisfy uP =
WP+ P+ -+ pnPai=p

WP + 2Py + -+ nProj =



Describing a scene in terms of gaze behavior %%
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Scene complexity as information search

« probabilisticdistribution of long saccades, given short saccades, describe

modes of looking
« this alsodependsonthe scene
 acomputational metric for scene complexity can be developed, based on

search behavior for visual information



. Fixations/Dwells

. measurable by 30Hz cameras
. algorithms discard all movement (blinks, saccades...)
200 § " ” - Mﬁ;" d“"t' i
Right eyl sTarget position o 1 .;.:";}."-
« Saccades l .
Lo g e
e ~300% = . a
Time § .
.

* Smooth-Pursuits | # .

) 1
MAGNITUDE, DEG.

F1G. 3. Peak velocity versus magnitude of human saccadic eye movements.

saccade

.
c ~<30%s :

Purves D, Augustine GJ, Fitzpatrick D, etal., editors. Sunderland (MA): Sinauer Associates; 2001.

Bahil, A.T.T., Clark, M. R., & Stark, L. (1975). The main sequence, a tool for studying human eye movements. Mathematical Biosciences, 24(3-4),
191-204. http://doi.org/10.1016/0025-5564(75)90075-9



Top-down decisions that underlie

saccade and smooth pursuit



Looking and Seeing

Saccade response times are earlier for seeing

Tasks
Look at stimulus 300
Discriminate up/down
9
0.5-1.5s @©
Fixation | 1.9s £
Target | max.2s E 200 .
+ Test | S
A + , Feedback @
' O X O
Time 100 200 300

ook

Bieg, H.-J., Bresciani, J.-P., Bilthoff, H. H., & Chuang, L. L. (2012). Looking for Discriminating Is Different from Looking for Looking’s Sake.
PLoS ONE, 7(9), 1-9. article. http://doi.org/10.1371/joumal.pone.0045445



Looking and Seeing

Saccade response time reflects decision-making

x 10°  Threshold Rate
Data from one participant - .
50 5 x 107 o . .
2 6
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30 g °® . 4 ° i
20 D o °
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10 ' k L 4 ° 2
Bl s o
0 200 400 600 % 200 400 600 400 800 1200 2 4 6 8
Saccade RT (ms) Saccade RT (ms) Look Look

LATER model S k

» decision model for saccades

 asaccade occurs when brain activity r~N(u,0?)
passes a decision threshold: 3
* threshold 0 -~ T
* rate of brain activity Stimulus Onset

Bieg, H.-J., Bresciani, J.-P., Bulthoff, H. H., & Chuang, L. L. (2012). Looking for Discriminating Is Different from Looking for Looking’s Sake.
PLoS ONE, 7(9), 1-9. article. http://doi.org/10.1371/joumal.pone.0045445

Carpenter RHS, Wiliams M (1995) Neural computation of log likelihood in control of saccadic eye movements. Nature 377: 59-62.



Looking and Seeing

Saccade response time reflects decision-making

Seeing results in more "neural activity”,
which results in faster saccade response times.

LATER model S,===———"-. - -
* decision model for saccades
* asaccade occurs when brain activity r~N(u,0?)

passes a decision threshold: 3

* threshold 0 -~
* rate of brain activity Stimulus Onset

Bieg, H.-J., Bresciani, J.-P., Bulthoff, H. H., & Chuang, L. L. (2012). Looking for Discriminating Is Different from Looking for Looking’s Sake.
PLoS ONE, 7(9), 1-9. article. http://doi.org/10.1371/joumal.pone.0045445

Carpenter RHS, Wiliams M (1995) Neural computation of log likelihood in control of saccadic eye movements. Nature 377: 59-62.



Looking and Seeing

Saccade velocity are higher for seeing

Tasks
Look at stimulus Saccade Velocity (deg./s)
Discriminate up/down 500
[ )
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Looking and Seeing

Saccade velocity are higher for seeing
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| Step
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S
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Bahill, A. T. T, Clark, M.R., & Stark, L. (1975). The main sequence, a tool for studying human eye movements.
Mathematical Biosciences, 24(3-4),191-204. http://doi.org/10.1016/0025-5564(75)90075-9



Looking and Seeing

Saccade velocities are higher for seeing

Fixation
| Step
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> | e
or S 400f T
T Time O -
>
S 200
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5 500f e . .
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Bahill, A. T. T, Clark, M.R., & Stark, L. (1975). The main sequence, a tool for studying human eye movements.
Mathematical Biosciences, 24(3-4),191-204. http://doi.org/10.1016/0025-5564(75)90075-9



Looking and Seeing

[—
Eye-movement properties are influenced by
the observer’s motivations.

Fixations are a noisy read-out of the observer’s
mind.

They include relevant and irrelevant information,
which have to be subjectively deciphered, which
does not necessarily reflect a user’s decision to
fixate them in the first place.



Seeing is influenced by cognition

not hard-coded variables

I—
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Tanaka, M., Yoshida, T., & Fukushima, K. (1998). Latency of saccades during smooth-pursuit eye movementin man: Directional asymmetries.
Experimental Brain Research, 121(1), 92-98.

Seya, Y., & Mori, S. (2012). Spatial attention and reaction times during smooth pursuit eye movement. Attention, Perception, &
Psychophysics, 74(3),493-509.



Seeing is influenced by cognition

cognition mode results in different characteristics

Primary tasks

Steering Looking
Steering g 0| i
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Van Gelder P, Lebedev S, Liu PM, Tsui WH (1995a) Anticipatory saccades in smooth pursuit: task effects and pursuit vector after saccades. Vision

Research, 35(5):667-678
Bieg, H. J., Bresciani, J. P., Bulthoff, H. H., & Chuang, L. L. (2013). Saccade reaction time asymmetries during task-switching in pursuit tracking.

Experimental Brain Research, 230(3), 271-281. http://doi.org/10.1007/s00221-013-3651-9




Seeing is influenced by cognition

from steering to discrimination

Primary tasks no effect of task (same task of discriminating?)

main effect of saccade direction
Steering  —
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Bieg, H. J., Bresciani, J. P., Bulthoff, H. H., & Chuang, L. L. (2013). Saccade reaction time asymmetries during task-switching in pursuit tracking.
Experimental Brain Research, 230(3), 271-281. http://doi.org/10.1007/s00221-013-3651-9



Seeing is influenced by cognition

from discrimination back to steering

primary tasks main effect of task
. main effect of saccade direction

. 700
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Bieg, H. J., Bresciani, J. P., Bulthoff, H. H., & Chuang, L. L. (2013). Saccade reaction time asymmetries during task-switching in pursuit tracking.
Experimental Brain Research, 230(3), 271-281. http://doi.org/10.1007/s00221-013-3651-9



Seeing is influenced by cognition

from discrimination back to steering

Summarized findings

discriminate peripheral object

hor. location (deg.)

> = <& saccades to nearing targets are faster 10 0 10
I IB IX
return to steering or looking
= (& saccades to nearing targets are slower  x O _x
towards
> &> saccades for steering are faster than O
saccades for looking X away S "

Bieg, H. J., Bresciani, J. P., Bulthoff, H. H., & Chuang, L. L. (2013). Saccade reaction time asymmetries during task-switching in pursuit tracking.
Experimental Brain Research, 230(3), 271-281. http://doi.org/10.1007/s00221-013-3651-9



Saccade to Smooth-Pursuit

Different types of eye-movement transitions

Pursuit
300
Fixation 1-2s Step petal
ey 250
® e ®© ©o or ’\H_H |
" — 200} 4 |
Pursuit ~| 212 . o ——1
target or 50
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Bieg H-J, ChuangLL, Bulthoff HH and Bresciani J-P (2015) Asymmetric saccade reactiontimes to smooth pursuit
Experimental Brain Research 233(9) 2527-2538.



Saccade to Smooth-Pursuit Q%

When do we perform an Early or Smooth transition?

Pursuit

N o2y o
Pursuit// P ° o
position of peripheral object does not
& determine early saccade versus smooth pursuit
Early Smooth 20°/s 10%s
S N 1 1
§ o =
Y B
£ s V \ é 05 0.5 .‘
g 10 .- . ggc § \ — early
£ | target & - }\\ == inooth/lat‘e
"% 500 0 500 % 4 6 8 10 12 eccentricity0 2 4 6 8 10 12
time (ms) time (ms)
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Bieg H-J, ChuangLL, Bulthoff HH and Bresciani J-P (2015) Asymmetric saccade reactiontimes to smooth pursuit
Experimental Brain Research 233(9) 2527-2538.



Saccade to Smooth-Pursuit
When do we perform an Early or Smooth transition?

: iii -
Max-Planck-Institut
fiir biologische Kybernetik

Pursuit

Fixation 1-2s Step petal
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Bieg H-J, ChuangLL, Bulthoff HH and Bresciani J-P (2015) Asymmetric saccade reactiontimes to smooth pursuit
Experimental Brain Research 233(9) 2527-2538.



Saccade to Smooth-Pursuit Q%

When do we perform an Early or Smooth transition?

I ey Eye-movements are based on
o " predicted variables, not sensed variables

estimated time-of-arrival
determines early saccade versus smooth pursuit

Early Smooth 20°/s 10%s
1
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Bieg H-J, ChuangLL , Bilthoff HH and Bresciani J-P (2015) Asymmetric saccade reactiontimes to smooth pursuit
Experimental Brain Research 233(9) 2527-2538.



User-state influences

eye-movement planning



Eye-movement Planning
for instrument scanning

Light-weight rotorcraft, BO105 Light-weight fixed-wing aircraft, Cessna



Instrument scanning & Control Performance

Dwell Frequencies Dwell Transitional Probabilities
best Control Performance worst Instruments/World
From:
A Al AT TQ ATl
s
g 5
i . . =
Entr’opy Straight and Level Flight _.QE;
0.6 0.62 0.63 0.77 = g =
-~ = i &
= S
C : : -
Fixation data can be interpreted in two ways g 2
« good pilots have attentional tunneling, or 3 EB.?”
* good pilots know where to look I ]
Transition-matrixis unambiguous g ‘ 2 3
» good pilots have consistent scan-pattern o e >

Chuang, L. L., Nieuwenhuizen, F. M., & Bilthoff, H. H. (2013). Afixed-based flight simulator study: the interdependence of flight control performance
and gaze efficiency. In Engineering Psychology and Cognitive Ergonomics. Applications and Services (pp. 95-104). Springer Berlin Heidelberg.



Instrument Scanning

performance, anxiety, cognitive load

Attentional Control Theory (AE?)——

(Eysenck et al., 2007)

Anxiety imbalances two attentional subsystems
« (Goal-directed system (Endogenous)
« Stimulus-driven system (Exogenous)

Goal-Directed Stimulus-Driven Goal-Directed Stimulus-Driven

>

, ’ffg,
N el /
‘ ;u‘é



Goal-directed resources

Executive functions: Updating, Shifting, Inhibition

Hypothesis: Eye-movement planning involves executive functions
« anxiety reduces “goal-directed resources”
« executive functions require “goal-directed resources”

n-Back delayed-matching task

0-back
- updating

2-back
- updating, shifting, inhibition

Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, a H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their
contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cognitive Psychology, 41(1),49-100. http://doi.org/10.1006/cogp.1999.0734

Taniji, J., & Eiji, H. (2008). Role of the Lateral Prefrontal Cortexin Executive Behavioral Control. Physiological Reviews, 88(140), 37-57.
http://doi.org/10.1152/physrev.00014.2007 .



Fixed-wing Landing Task

Dual axis tracking task ¥

Not to scale

Lateral Control - Track
Runway Centreline




Fixed-wing Landing Task

Dual axis tracking task

N
1 v 2NN
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Vertical Control - Track
Glideslope




ACT predicts that...

. anxiety should reduce goal-directed resources,

which should reduce the efficiency of goal-directed behavior

Representative participant

Prejtest

B0 900 3000 300 1200 1300 1400 1500 1600 1M00 IS00 1900 2000 2300 2200 2300 mmmmoo;m 1200 1300 00 1500 600 muoomw::wum
Hoe: Gaze Manz Gaze

— Instructions

—  Monetary incentives — 50€
—  Video camera

-  VATSIM



Anxiety manipulation validated

Cognitive Anxiety Questionnaire Heart Rate
CSAI (Cox, Martens, Russell, 2003)
30 -
gl n-Back | i -Back
26 | n-Back + Anxiety 90 - ——n-Back + Anxiety
2 24 - —
9 = i
2 22 - o 8
g 20 1 £ 80 -
£ 18 1 g
@ | e % II
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14 - o
12 1
10 T 1 65
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ACT predicts that...

... anxiety should reduce goal-directed resources,
which should reduce the efficiency of goal-directed behavior

Visual scanning entropy (Stark & Ellis, 1986)
* Predictability of next dwell location

Entropy = 2 p(i)

S p(j)log; p<j|i>],z'¢j
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Summary: Eye-movement planning % m%

I—

The transition probability of dwells reflects
eye-movement planning and executive functions.

 Eye-movement planning relies on executive functions
(shifting, updating, inhibition).

* Anxiety reduces the role of executive functions on
eye-movements.

* Increasing executive functions’ load can further reduce
its influence on eye-movements.



Conclusions
What you see is what you get(?)




How to develop a steering model

wear a Silly contraption and perform a dangerous task

Py e —

Queen’s Road, Edinburgh, Google Maps Image: Land M, Mennie N, Rusted J (1999)
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Land, M. F.,&Lee, D.N.(1994). Where we look when we steer. Nature, 369(6483), 742-744.
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How to develop a steering model

Infer what information/error is
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Land,M. F.,&Lee, D.N.(1994). Where we look when we steer. Nature, 369(6483), 742-744.



How to develop a steering model

Infer what information/error is
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Land,M. F.,&Lee, D.N.(1994). Where we look when we steer. Nature, 369(6483), 742-744.



How to develop a steering model

draw the rest of the fantastic owl

Two point steering model

N QPP N o = k0, + k.0, + k0,

(a) (b) (c)
Figure 1. Near and far points for three scenarios: (a) straight roadway with vanishing point,

(b) curved roadway with tangent point, and (¢) presence of lead car. Salvucci, D. D., & Gray, R. (2004). Atwo-point visual control model of steering.
Perception, 33(10), 1233-1248.
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Land,M. F.,&Lee, D.N.(1994). Where we look when we steer. Nature, 369(6483), 742-744.



Simple models of human-machine interactions Q%

could help us interpret eye-movement data

1. Fixation count (HUD): Young > Old

2. Fixation summed duration (HUD): Young > Old
3. Vertical spread: Young > Old

4. Horizontal spread: Old > Young

Caird, J. K., S. L. Chisholm, and J. Lockhart. "Do in-vehicle advanced signs enhance older and younger drivers’ intersection
performance? Driving simulation and eye movementresults." International Journal of Human-Computer Studies 66.3 (2008): 132-144.



We have known since Helmholtz...

Fixation is not (covert) attention

Attentional
focal point

Stimulus display

Visible
pin hole

Spark
view shield Electrical
connections

Hermann von Helmholtz

Credit: Orienting of Attention (Wright, 2008)



To conclude

« worthwhile challenge to track eye-movements, not just
fixations

« top-down influences eye-movements, not fixations

« fixations indicate information that may or may not be task-
relevant

* some measures of eye-movement:
v’ saccade response time
v' probability distributions of saccade length

v' probability distributions of AOI transitions

* models of human behavior allow for meaningful measures of
eye-movement



A process cannot be understood by stopping it. Understanding
must move with the flow of the process, must join and flow with it.

Frank Herbert

Credit: Phil H. Weber
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